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Appendix-A – Reformulation of the Z-transform method  
!
McLean & Watts [1] and Bartholomew and et. al. [2] used the following method, also 

known as the Z-transform method, to estimate instantaneous oxygen consumption ( VO2 ) 

from the fractional concentration of oxygen (FE ) in the excurrent air stream from the 

respirometry chamber. This method assumes that after any changes in VO2  in an open-

flow respirometry system,FE  changes exponentially to a new steady-state equilibrium 

value, FEeq . To accurately estimate VO2 , we require not only the current FE , but also the 

equilibrium value of the fractional concentration (FEeq ) that would eventually be reached 

if there were no further change in VO2 . For any system with exponential washout 

behavior, such as a flow-through respirometry system, the rate of approach to the 

equilibrium point is constant and it can be determined as follows: 

Z = FE (k +1)−FE (k)
FEeq −FE (k)      (S1-A1)

 

where  

Z =1− e
−
F
V
T

              (S1-A2) 

and T is the measurement time interval. FEeq can be determined by combining these two 

equations: 

FEeq =
FE (k +1)−FE (k)

1− e
−
F
V
T

+FE (k)
       (S1-A3)

 

Therefore, FEeq  can be calculated by two consequent measurement of FE . 

The instantaneous change of oxygen in the chamber can be determined by using FEeq  as 

follows [3]: 
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VO2 = F
FIO2 −FEeq
1−FIO2      (S1-A4)

 

where F is the flow rate and FIO2  is the fractional concentration of oxygen in the inlet air 

flow. By defining u(k) =
VO2
F  and c(k) =

FIO2 −FE (k)
1−FIO2

 (the change in the concentration of 

the gas), Equation S1-A4 changes to: 

        (S1-A5) 

which is Equation 1 in the manuscript. As long as the washout is exponential, the same 

equations are valid for CO2 or any other gases. 

 
    

u(k) = 1
Z
c(k +1)−1− Z

Z
c(k)
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Appendix-B – Discretizing a differential equation  
 

The dynamical equations of any linear system has the following state-space format [4]: 

     (S1-B1) 

and can be transformed to a difference equation or discrete model, following [4]: 

       (S1-B2) 

 where: 

     (S1-B3) 

    (S1-B4) 

Therefore, the discrete form of Equation 4 ( ) is: 

              (S1-B5) 

which is equivalent to Equations 1 and 6. 

  

X(t) =AX(t)+Bu(t)

X(k +1) =AdX(k)+Bdu(k)
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Appendix-C – Experimental determination of the impulse response 
 
The impulse response, h(t), can be experimentally determined by injecting a short pulse 

of CO2 into the chamber close to where the animal emits CO2. To obtain the impulse 

response precisely, two aspects of methodology should be considered carefully. First, the 

duration of the CO2 pulse should be very small in comparison to the duration of the 

impulse response. The exact duration of the impulse is not critical, but it should be very 

small (based on experience, it should be less than 0.5% of the impulse response duration). 

If the respirometry chamber is relatively large or the flow rate is relatively small, the 

pulse duration can be long. In those cases, it is possible to find the impulse response by 

manually blowing into the chamber. In a system with fast dynamics, i.e., one with a high 

flow rate and/or a small chamber, a high-speed valve is required to precisely control the 

duration of the injection. Second, the injection should not significantly affect the flow 

rate. If it changes the flow rate, then the system is no longer an LTI system. This means 

that the volumetric injection rate must also be negligible compared to volume flow rate 

the inlet airflow.  

 

If these assumptions are met, the actual concentration and pattern of the gas injection 

used by the experimenter does not matter, because the measured impulse response will be 

not be affected (S1 Fig. 1). Here, we explain why this is true. Transforming the input to 

an output is an area-conservative process because all injected CO2 molecules eventually 

pass through the IR chamber of the sensor. Therefore, by normalizing the output signal 

by dividing by its area, the output of the gas analyzer becomes independent of the shape 

of the input signal. To demonstrate this concept, a convolution of different short inputs 

with an impulse response has been computed in a simulation using Equation 7. The 

normalized outputs are very close to the true impulse response (S1 Fig. 1), even if the 

outputs are very different. We also tested this experimentally, by injecting different 

pulses of CO2 with different durations into the 28 mL chamber, using with different pulse 

sizes (with flow rate of 125 mL/min). The results (S1 Figs. 1B and 1C) demonstrate the 

independence of the result and the shape of the short pulses. A Picospritzer microinjector 

(Picospritzer III, Parker Hannifin, Precision Fluidics Division, NH, US) was used to 

control the duration of the pulses. With the microinjector, the duration of the pulse can be 



! 5 

precisely controlled, but the flow rate depends on the pressure of the upstream flow. To 

provide an extreme condition, we changed the pressure of the CO2 upstream (before the 

injection valve) for each pulse. The outputs of the respirometry system are different for 

each pulse, but as shown in S1 Fig. 1C, the normalized outputs that represent the impulse 

response are indeed identical.  

This study showed that the expression  adequately describes the impulse 

responses of small respirometry chambers. In this model, the parameter  is not 

independent from the other two parameters. Because the area of the impulse response is 

one, can be determined to normalize the impulse response as follows: 

α =
1

tme−βt dt
0

∞

∫
=
βm+1

m!
        (S1-C1) 

 

 
S1 Fig. 1: The impulse response can be determined by injecting a short input. If the duration of the input is 

small compared to the duration of the impulse response, the normalized output signal (the impulse 
response) will be independent of the shape of the input signal. (A) and (B) show the different input 
signals and their corresponding outputs in a simulation for a given impulse response. The 
normalized outputs are very close to the given impulse response. The determined impulse 
responses for a setup (V = 28 mL, F = 125 mL/min) with different inputs are indistinguishable (C). 
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Appendix-D – Derivation of the governing equation of the system using 
the impulse response 
 
The Laplace-transformed form of the convolution equation of Equation 7 is: 

             (S1-D1) 

U(s) = C(s)
H (s)

          (S1-D2) 

where C(s), H(s), and U(s) are the Laplace transforms of c(t), h(t), and u(t), respectively. 

The Laplace transform of the impulse response  is: 

           (S1-D3)
 

Plugging S1-D3 into S1-D2 yields: 

                          (S1-D4) 

The inverse Laplace transform of the above equation is: 

     (S1-D5)
 

 

  

C(s) = H (s)U(s)

h(t) =αtme−βt

H (s) = αm!
(s+β)m+1

U(s) = 1
αm!

(s+β)m+1C(s)

u(t) = 1
αm!

e−βt d
m+1

dtm+1
eβtc(t)( )
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Appendix-E – Robust differentiation of noisy data 
 
Several methods can be used to differentiate noisy data and regulate the detrimental 

amplification of noise [5-11]. Here we used the low-noise Lanczos differentiator method, 

in which at each point, several neighboring points are used to calculate the derivative. For 

instance by using seven points, the derivative of a function f(x) at x* will be: 

                    (S1-E1)
 

For derivations with a different number of points, see [10].  

 

f (x*) = 126( f1 − f−1)+193( f2 − f−2 )+142( f3 − f−3)−86( f4 − f−4 )
1188ΔT
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Appendix-F – Woakes’ method 
!
After Bartholomew’s paper introduced the Z-transform in 1981 [2], Woakes and Butler 

published another method to recover the instantaneous gas exchange signal in flow-

through respirometry systems in 1983 [12]. Although they derived their equations with 

different approaches, here we show that these two methods are actually identical. It is 

possible that Woakes and Butler were unaware of the Z-transform when they developed 

their version of the method.  

In the appendix of their paper [12], Woakes and Butler provide the following equation for 

the volume of the produced CO2 or consumed O2: 

                                    
Vgas = (C2 −C1)V +

(C1 +C2 )
2

(t2 − t1) !Q
                                    (S1-F1) 

where t1 and t2 are sampling times, C1 and C2 are the fractional concentrations of the gas 

in the outlet in respective times, V is the chamber volume, and 
!Q  is the flow rate (which 

is called F in our manuscript). In this method, it is assumed that the fractional 

concentration of the gas changes almost linearly from C1 to C2 during this interval. By 

dividing both sides of the equation by (t2 − t1)
!Q , which is the total inlet gas from t1 to t2, 

we can find the instantaneous flow rate of the produced CO2 or consumed O2 during this 

interval. This quantity is named u in the main text: 

                                        u =
Vgas

(t2 − t1) !Q
=
(C2 −C1)
(t2 − t1)

V
!Q
+
(C1 +C2 )

2
              (S1-F2) 

Note that 
(C1 +C2 )

2  and 

(C2 −C1)
(t2 − t1)  are the fractional gas concentration and the time 

derivative of it at 
t = (t2 + t1)

2 , respectively. Replacing these quantities with c(t) and !c(t)  

in equation S1-F2 results in equation 4, which is the Z-transform or Bartholomew 

equation. 
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Appendix-G – MATLAB code 
!
A MATLAB code with sample experimental data is provided [13] (S2 file) to perform the 

GZT method on experimental data. Before using the method in an experiment, the 

calibration coefficients must be determined. CO2 gas (or any other measurable gases) 

with an arbitrary pattern (u(t),  S1 Fig. 2) should be injected into the respirometry 

chamber and the concentration of this gas in the outlet should be recorded (c(t), S1 Fig. 

2). For this code, both signals should be saved in a text file with the name 

‘CalibrationData.txt’, which contains three columns of data: time, the input signal u(t), 

and the output signal c(t). After running the code and selecting the calibration option, the 

code uses Equation 14 to determine the calibration coefficients and saves them in the 

‘Parameters_a.txt’ file. After determining the calibration coefficients, the experimenter 

can now recover the instantaneous gas exchange data from their raw gas exchange data. 

After collecting raw gas exchange data from the subject, the recorded data should be 

saved in a text file with the name of ‘Data.txt’, which should contain two columns: time, 

and concentration of the gas of interest in the outlet (Fig. 7). After running the code and 

choosing the signal recovery option, the code uses the raw data and the calibration 

coefficients the recover the instantaneous gas exchange signal (Fig. 7). 

 

S1 Fig. 2: A known concentration of CO2 is infused into the chamber (A) and the CO2 concentration in the 

outlet of the respirometry chamber (B) is recorded for use in calibration.  
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