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Analysis of raw volume data generated from different scanning technologies faces a 
variety of challenges, related to search, pattern recognition, spatial understanding, 
quantitative estimation, and shape description. In a previous study, we found that the 
volume cracker (VC) 3D interaction (3DI) technique mitigated some of these problems, 
but this result was from a tethered glove-based system with users analyzing simulated 
data. Here, we redesigned the VC by using untethered bare-hand interaction with real 
volume datasets, with a broader aim of adoption of this technique in research labs. We 
developed symmetric and asymmetric interfaces for the bare-hand VC (BHVC) through 
design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC 
technique against standard 2D and widely used 3DI techniques with experts analyzing 
scanned beetle datasets. We found that our BHVC design significantly outperformed 
the other two techniques. This study contributes a practical 3DI design for scientists, 
documents lessons learned while redesigning for bare-hand trackers and provides 
evidence suggesting that 3DI could improve volume data analysis for a variety of visual 
analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with 
visualization for improving the effectiveness of visual analysis of volume datasets. Based 
on our experience, we also provide some insights into hardware-agnostic principles for 
design of effective interaction techniques.

Keywords: 3D interaction, 3D visualization, volume data analysis, bimanual interaction, virtual reality

inTrODUcTiOn

Across a broad range of scientific domains such as medical biology, geophysics, and astronomy, 
scientists use 3D techniques to scan humans, animals, man-made structures, the earth, or outer 
space. The 3D volume data generated through such methods, which include computed tomography 
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), seismography, 
radar, and radio or optical telescopy, consist of voxels that map the material properties of the object. 
Raw volume data needs to be segmented, to separate the useful set of voxels from the occluding ones, 
before an effective visual analysis can be performed.

Most segmentation methods (including automatic) are coarse and inaccurate and ignores partial 
volume effects (Marai et  al., 2006). Manual segmentation remains a labor-intensive and time-
consuming task. We believe an interactive human intervention would be very efficient in this process 
to identify the useful set of voxels constituting the regions of interest in a raw volume and inform a 
semi-automatic segmentation of the entire volume.
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Human intervention in the form of bare-hand interaction could 
be particularly suitable because domain scientists and research-
ers hesitate to wear cumbersome 3D devices. Also, a bare-hand 
interface can be used within a normal scientific workflow and in 
conjunction with traditional 2D interactive tools.

Axis-aligned slicing (AAS) is the most widely used 2D interac-
tion technique for volume data exploration (Xradia-Solutions, 
2012), and arbitrary slicing (AS) is a well-known 3DI technique 
(Hinckley et  al., 1994a). We define 3DI as human–computer 
interaction in which the user’s tasks are performed directly 
in a 3D spatial context (Bowman et  al., 2005). Both these and 
other virtual slicing techniques, e.g., Schultheis et  al. (2012) 
and Weiskopf et al. (2003), often require the user to remove the 
occluding voxels to expose the underlying regions of interest in 
a volume. But slicing also results in the removal of part of the 
volume that contains context-defining features, without which 
the analysis becomes more difficult.

A benefit of so-called “focus  +  context” techniques (Wang 
et al., 2005) is that they aim to preserve all the voxels at all times, 
while focusing on regions of interest using innovative visualization 
techniques. These techniques typically use a magnification meta-
phor (Wang et al., 2005), an exploded views approach (Bruckner 
and Gröller, 2006), or a variety of widgets (McGuffin et al., 2003), 
and almost all are designed to work on pre-segmented volume 
data. Some assume semantic layers in a volume or distort the less 
important parts of a volume.

Previously, we analyzed the limitations of prior approaches 
(AAS and AS) and also interviewed volume data analysts from 
multiple scientific domains to understand their challenges. 
Based on this research, we designed a 3DI technique called 
the volume cracker (VC) (Laha and Bowman, 2013), which we 
describe below. VC appeared to out-perform standard interaction 
techniques. But the implementation and the study had important 
limitations, which we describe below and seek to overcome in 
our current work.

The core contribution of VC is not as a new 3D visualization 
method or algorithm–multiple prior approaches of such tech-
niques exist already, e.g., the exploded views technique (Bruckner 
and Gröller, 2006) and a host of widgets proposed by McGuffin 
et al. (2003). VC is rather inspired by such approaches and is a 
novel 3DI technique [human–computer interaction where the 
input is provided in direct 3D spatial format, defined in Bowman 
et  al. (2005)], which seeks at leveraging the benefits of direct 
spatial input for improving the effectiveness of such 3D visualiza-
tions for visual analysis of volume datasets. So, to provide a level 
ground for comparison (3D spatial input), we always compare it 
against versions of the states-of-the-art designed to provide input 
in direct spatial form.

In this paper, we describe the design and evaluation of mul-
tiple bare-hand versions of the VC technique. Our contributions 
include (1) a practical interface for 3DI with raw volume data 
that can be used by scientists in the lab, (2) lessons learned while 
redesigning an existing technique to use a bare-hand tracking 
device, (3) additional evidence that 3DI can be useful in volume 
data analysis for a variety of abstract task types, and (4) insights 
into hardware-agnostic principles for design of interaction 
techniques.

relaTeD WOrK

Previous work in 3DI design for volume data analysis has devel-
oped bimanual-asymmetric neurosurgical tools for AS of brain 
data (Hinckley et al., 1994b). Holding a doll’s head in the non-
dominant hand allowed the user rotation of the volume about 
all three axes, while a cutting plane prop held in the dominant 
hand allowed slicing the dataset along desired orientation directly 
mapped with the real plate, and relative position of the slice plane 
to the volume data perceptually mapped to the two hand-held 
props. More recently, Qi and Martens (2005) developed a similar 
tangible interface for AS. They used a tangible cube, held in the 
non-dominant hand, to mimic a virtual trackball for manipulat-
ing the volume, while the dominant hand controlled the orienta-
tion and position of a pen, or a plane-like tangible input device 
for arbitrarily slicing through the volume.

Preim et al. (2002) developed some of the first measurement 
tools for medical visualizations using 3DI techniques, with 
accuracy adapted to the size of the voxels. Their tools included 
interactive rulers for measuring distances and a virtual geomet-
ric compass for measuring angles. On similar lines, Reitinger 
et al. (2006) proposed a host of virtual spatial analysis tools for 
surgical planning, grouped by distance measurements, volume 
measurements, and angular measurements. They also proposed 
using measurement props as input devices (which they did not 
use in their evaluation study), such as a ruler, pen, and measure-
ment jug. More recently, Monclús et al. (2009) proposed using a 
“magic lantern” approach to remove the outer layers in a volume 
data, in order to reveal occluded underlying layers. This extended 
prior work on exploded views of volume data by Bruckner and 
Gröller (2006).

Evaluating gesture-based approaches for tasks in medical 
volume visualization, Kirmizibayrak et al. (2011) ran studies to 
evaluate gestures for rotations and target localization. Ulinski’s 
(2008) research showed that symmetric and synchronous ges-
tural approaches are best for selection tasks in volume datasets, 
but more recent designs have used symmetric-asynchronous 
bimanual designs for medical data exploration (Mlyniec et  al., 
2011). Our first design of gesture-based 3DI technique for volume 
data exploration, called VC, further explored these issues and is 
explained in Section “Volume Cracker” below.

Tactile and commodity 3D User interfaces 
for Visualization
Recently, research in tactile or tangible interfaces has also 
explored designing 3DUIs for exploring data visualization, bring-
ing back partly the spirit of the original AS designed by Hinckley 
et al. (1994a). Perhaps, one of the more notable ones is Jackson 
et al.’s (2013) design of a simple hand-held stick with a printed 
pattern. They demonstrate interacting with 3D visualizations 
of fiber structures in a fish tank VR system. The stick provides 
3DOF position-controlled rotations of the dataset, but more 
interestingly, simply positioning two fingers on the stick allows 
slicing through the data, which allows for an intuitive interactive 
exploration of volume data. Another kind of interaction design, 
keeping more along the lines of tactile interaction, has been 
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tablet-based or surface-focused – Isenberg (2016) good summary 
of the recent work done in this line. For example, Coffey et al. 
(2012) extend the world-in-miniature metaphor (Stoakley et al., 
1995) in their interactive slice WIM, through a one-to-one static 
mapping between interactions performed on multi-touch table 
and a stereoscopic wall display. Besançon et al. (2017) presents 
a conceptual framework of combining tactile input and tangible 
sensing using a tablet for 3D manipulation tasks. This research 
provides intriguing techniques for interacting with 3D visualiza-
tions of data, in ways that allow the users to almost “touch” the 
data through the tactile props or devices. In our approach of 
designing the BHVC from the VC, although we remained within 
the spirit of allowing more intuitive interactions with commodity 
3DUIs, our designs are less tactile but allows the users to carry out 
more free-form and in-air interactions. It remains to be explored, 
which of these two design methodologies would perform better 
overall.

Volume cracker
Volume cracker is a free-hand bimanual interaction technique 
for volume data exploration (Laha and Bowman, 2013), designed 
specifically to aid in the visual analysis of raw scanned data. Here, 
we define free-hand techniques as ones in which the hands of the 
user move freely in 3D space.

Volume cracker allows the user to recursively crack open a 
volume using intuitive naturalistic gestures, in order to isolate 
smaller regions of interest. This helps to reduce clutter in a dense 
volume, enabling exploration of hidden and occluded structures 
inside. By preserving the full volume at all times, VC overcomes 
the problems of prior approaches, which relied on removing 
occluding portions of the volume, but, in the process, removed 
valuable contextual information that may be important for an 
overall understanding.

The published prototype of VC was developed using teth-
ered 5DT data gloves (Fifth_Dimension_Technologies, 2015) 
and Intersense IS900 hand trackers (Intersense, 2015) and was 
shown to work with simulated raw volumetric datasets (Laha 
and Bowman, 2013). In an evaluation study run with non-expert 
participants, VC was compared to AAS and AS techniques. The 
results showed that VC had significant advantages over those 
techniques for search and pattern recognition tasks.

Although this evaluation study showed significant potential 
for VC to improve analysis, the VC prototype was impractical and 
cumbersome. The tethered design could be a big inhibition in the 
adoption of this technique outside core computer science research 
labs, as novel technologies can be difficult for direct adoption by 
domain scientists and more so with unnecessary tethering. In 
addition, the study results need validation with expert analysts 
who study real volume datasets. We sought to address these issues 
in the current work.

Bare-hanD VOlUMe cracKer

Overcoming Prior Problems with  
Volume cracker
We aimed to redesign VC so that any volume data analyst 
could adopt it in their lab. Toward this aim, we explored the 

space of devices for 3D tracking technology for easily available 
commodity-level off-the-shelf hardware. We considered multiple 
commercial products including the Microsoft Kinect, the 3Gear 
Systems (3Gear-Systems, 2015), and the Leap Motion controller 
(Leap-Motion, 2015). We chose the Leap Motion controller (or 
simply, the “Leap”) because (1) it provides very high accuracy 
and low latency for bare-hand tracking, (2) it requires minimum 
desk space, and (3) it is the cheapest in its class (as of May 2016).

By using the Leap, we were able to avoid the cumbersome teth-
ering, localization, and high price range of the wired IS900 track-
ers and the 5DT data gloves used in the previous VC prototype. 
Instead of using a glove, the Leap provides tracking capabilities of 
bare human hands and fingers, and we therefore named our new 
technique the “Bare-Hand VC” (BHVC).

We used the constructor SDK (cSDK) from NGRAIN 
(NGRAIN-Constructor-SDK, 2015) to render real volume 
datasets. The cSDK rendered our datasets at real-time frame 
rates (~60 Hz), while allowing us access to manipulate individual 
voxels and groups of voxels at run time. This was critical for the 
design of BHVC.

Professor Jake Socha (third author in this paper) analyzes the 
fluid flow in the tracheal tubes of insects in his research. We used 
datasets from his lab (see Datasets) and designed the current 
interface and evaluation of BHVC around the tasks important 
to his research objectives (see Evaluation). We were also able to 
secure the help of 12 researchers from his lab to participate in our 
evaluation study.

Design challenges with the leap
The Leap is a consumer-oriented device that provides six degree-
of-freedom (6DOF) tracking of bare human hands and fingers. 
Its accuracy in finger tracking and latency (in its feedback loop) 
levels are comparable to some of the best 3D trackers currently 
available. But it has several limitations, primarily stemming from 
its infrared camera use. The Leap sits on a desk and has an inverted 
cone-shaped field of view (FOV), which limits the workspace for 
users’ hand movements. To obtain the best tracking requires a 
user to place their hand at least five inches above the device, while 
avoiding bright sunlight and reflective objects and also avoiding 
leaning forward (as the head can be misidentified as a hand). The 
detection of hand orientation by the Leap depends heavily on the 
number of fingers tracked. This causes problems with detecting 
the orientation of closed fists and reduces the postures available 
for 3DI.

Occlusion is another important source of problems for the 
Leap. Because the vision-based tracker requires a clear line of 
sight, one hand can occlude the other, or the palm can occlude the 
fingers, or fingers can occlude other fingers. These problems limit 
hand and wrist movements and severely constrain the gestures 
available for 3DI designers.

Finally, the Leap assigns hand and finger IDs to the tracked 
body parts. These may randomly vary between frames, posing 
design challenges. The jitter between frames can also cause the 
palm normal (calculated by the Leap) to invert, and the number 
of fingers detected to change unexpectedly between frames.

In spite of these problems, the Leap’s unique capabilities of 
tracking bare hands and fingers inspired us to use it for the BHVC 
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and to address the limitations of the Leap through design. The 
Leap also represents a group of infrared tracking devices, which 
could be a possible choice for desktop 3D input in the near future, 
and we hoped that the lessons we learned here could be used to 
guide gesture-based interaction in that design space.

Bimanual-symmetric interface  
Design for BhVc
We first attempted to directly migrate the prior VC design (Laha 
and Bowman, 2013) to the Leap and cSDK, as the original VC 
design had been validated to work well for real-world volume data 
analysis tasks (Laha and Bowman, 2013). The main features of 
VC were the unimanual grab and selection modes, the bimanual 
volume-cracking preview mode, the cracking gesture, bimanual 
cracking, bimanual grab of cracked and connected sub-volumes 
on a plane, and joining back of sub-volumes. Mapping the cor-
responding gestures directly with the Leap was not possible, 
because (1) the detection of a closed-fist orientation with the Leap 
was far from reliable, but the grab gesture needed 6DOF track-
ing of the closed fist and (2) furthermore, bimanual interaction 
with the Leap was severely impaired due to occlusion problems, 
while the strength of the volume-cracking preview arguably came 
from the 3D movement of two hands in free space.

We started exploring the bare-hand interaction design space, 
balancing intuitiveness with the choices that the Leap offered. 
System control commands could be mapped to the different 
number of fingers detected by Leap. However, fluctuations in the 
detected number of fingers, sometimes varying by one or two 
between frames, demanded a gap of at least two or more fingers 
between meaningful postures for distinct and robust detection 
by the Leap. The two postures we found to be reliably distinct 
were with one finger extended and more than one finger extended 
(open palm).

The grab mode of VC needs more freedom of rotation than 
the selection mode, but it proved difficult to detect orientation 
changes when tracking a single finger with the Leap. Therefore, 
we decided to use single-finger selection and open-palm grab. 
Although this may appear counterintuitive (in the real-world, we 
grab with the fist closed), we decided to trade intuitiveness for 
freedom of movement and tracking.

Because 3DOF absolute rotation with the Leap is limited to 
around 100 degrees about the pitch and roll axes, we tried to 
implement position-controlled non-isomorphic 3D rotation 
(Poupyrev et  al., 2000) and rate-controlled rotation (Bowman 
et al., 2005). In the amplified non-isomorphic 3D rotation, as the 
user rotated her hand in the real world, she saw the camera in the 
virtual world rotating twice or thrice the amount of hand rotation. 
But the quick rotation was either too fast to control precisely, or 
the tracked space for rotation fell short of what was needed. In the 
rate-controlled 3D rotation, when the user kept her hand near the 
neutral orientation (hand parallel to the desk), no rotation hap-
pened. When she tilted the hand in some direction, if the tilt angle 
went beyond a certain threshold, we started the camera rotation, 
at a constant rate. By experimenting with different threshold 
values, we found a certain value about each axis that had a good 
intuitiveness–performance combination. We finally settled for 

the 3DOF rate-controlled rotation, with two levels of speed (two 
different thresholds), around each of the three orthogonal axes. 
We used 3DOF position-controlled translations.

For the bimanual cracking preview and cracking gesture, we 
had two choices: single-finger and open-palm postures with each 
hand. We wanted to have bimanual grab activated immediately 
after the cracking occurs, as in the original VC. We thus used 
bimanual single-finger pointing for the cracking preview mode. 
The cracking preview is activated when one finger of each hand 
is detected in the tracking volume. The preview is updated in 
each frame. The invisible cutting plane that creates the preview 
is located at the midpoint between the two fingertips and is 
oriented along the line joining the two fingertips. The preview 
animation is active as long as both hands are inside the volume 
and is canceled as soon as either hand is taken out. We chose 
the simultaneous opening of the fists to the open-palm position 
as the gesture to crack the dataset. The cracking preview mode 
suffered from the occlusion problems with the Leap but far less 
with the bimanual single-finger posture than with bimanual 
open-palms.

We preserved other features of VC such as restricting the 
movements of a sub-volume on a plane, joining back of the sub-
volumes, and the hierarchy of cracking. We presented the details 
of the design of this symmetric interface and its challenges in a 
workshop paper (Laha and Bowman, 2014).

evaluation of the Bimanual-symmetric 
Design of BhVc
Socha and De Carlo (2008) tested a prototype of this interface with 
his synchrotron X-ray micro-computed tomography (SRμCT) 
scanned beetle datasets (see Datasets and Figure 1). Our approach 
was to let him try it out first, and then carry out some important 
tasks he would typically perform to answer his research questions. 
Initially, he had difficulty while trying out the different features 
of BHVC. We iterated with him for several weeks, modifying our 
design based on his advice and our assessment of his problems. 
However, the usability issues kept recurring.

We reviewed the usability problems, both in direct discussion 
with him and separately as designers of 3D user interfaces. We 
found that some of the problems were due to his lack of familiar-
ity with 3D input devices and because of the inherent difficulty 
in using 3D rate-controlled rotation. There was also fatigue 
associated with holding both hands in space all the time. Inherent 
problems with the Leap such as limited FOV and occlusion (made 
worse by bimanual tracking) compounded these issues. The lack 
of intuitiveness of our gesture set (such as open-palm for grab) 
was an additional problem.

Most of these problems arose directly because of differences 
from the original VC. Because of the Leap’s limitations, we were 
not able to use position-controlled rotation or the more natural 
gesture set of the original VC. This is why the direct migration 
of the technique to the new device did not work (see Towards 
Hardware-Agnostic Design Principles).

We realized that desktop infrared camera-based tracking 
devices such as the Leap required a complete redesign of the 
BHVC from the ground up, rather than a simple migration of 
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FigUre 2 | Bare-hand volume cracker (BhVc): a 3D interaction technique – (a) μ-cT scan of a beetle, (B) cracking preview, (c) cracked beetle, and 
(D) a participant using BhVc.

FigUre 1 | The bimanual-symmetric interface of the BhVc – (a) μ-cT scan, (B) cracking preview, (c) cracking, and (D) cracked data.
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our original design. We explored an asymmetric variation, where 
one hand could use a less fatiguing desktop device, and the other 
could be tracked by the Leap, but now with higher reliability.

Bimanual-asymmetric interface  
Design for BhVc
In designing an asymmetric interface, our first priority was trying 
to decide how to divide the different interaction requirements 
between the dominant and the non-dominant hands. We decided 
to follow Guiard’s framework for division of labor in bimanual 
asymmetric interactions (Guiard, 1987). He postulated that (1) 
the dominant hand follows the reference frame provided by the 
non-dominant hand, (2) the dominant hand works on a finer 
spatial and temporal scale, and (3) the non-dominant hand leads 
while the dominant hand follows.

Of the interaction features in BHVC, we observed that the 
3D manipulations (camera rotations and translations) applied 
to the whole dataset at all times. These work on a global spatial 
and temporal scale and provide the frame of reference for the 
more nuanced interactions specific to the VC. Similarly, the mode 
switches for system control also operate globally.

We thus decided to separate out the global 6DOF camera 
controls and system commands to a different input device and 
use that with the non-dominant hand. We chose to use the Space 
Navigator Pro from 3D-connexion (3D-Connexion, 2015) for 
this purpose. This is a 3D mouse that provides a 6DOF elastic 
“handle,” which we could directly use for camera manipulation. 
We used the buttons on its keypad for system control commands. 
This is a common device used by 3D modelers and artists for 
camera control with the non-dominant hand. In theory, it should 
reduce fatigue, occlusion, and tracking problems as compared to 

the first BHVC design, because it would enable the Leap to track 
just one hand, while allowing the other to rest on the table.

We used the Leap for the functionality specific to VC and not 
related to camera or system control. We designed the asymmetric 
interface of BHVC inspired by a magnet metaphor, using the Leap 
to track only the dominant hand. We imagined the dominant 
hand acting like a magnet, and the voxels, in a volume, acting 
like small metallic pieces. As the hand hovered around the dataset 
in 3D, it attracted more or fewer of the voxels, depending on how 
close or far it was from the dataset, which produced the cracking 
preview. To keep the interface simple, we defined the boundary of 
magnetic attraction as a plane (instead of a sphere), positioned at 
a fixed distance from the hand, toward the volume, and oriented 
perpendicular to the line joining the center of the hand and the 
center of the volume. We showed a transparent slice plane at that 
position and orientation as a visual cue to the user.

Preliminary evaluation and  
Modifications of BhVc
Professor Socha found that this interface was much more intuitive 
and easier to control than the previous symmetric version. But 
there were still some design issues specific to BHVC. For example, 
the cracking plane was unconstrained in 3D. When the cracking 
preview showed the volume breaking into two parts along the 
viewing axis (the line of sight of the viewer), the sub-volume 
in front blocked the cracked face of the other sub-volume. This 
made it difficult for him to judge precisely where to crack. Thus, 
we constrained the cracking plane to be perpendicular to the view 
plane (limiting some of the 3D interactivity), essentially keep-
ing the depth of the hand at the same depth as the center of the 
volume (see cracking preview in Figure 2).
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FigUre 3 | Turning the pages with BhVc – the synchronous shrinking 
and expanding of the sub-volumes with hand movement. (a) and (B) 
are two instances in this action.

FigUre 4 | hiding a sub-volume – (a) point to select a sub-volume, (B) hit the escape key to hide, and (c) remove the tracked hand.
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Another problem was related to selecting a sub-volume in 3D. 
Our interface lacked many depth cues such as stereo, shadows, 
and head-tracked motion parallax. Hence, selecting sub-volumes 
in 3D was difficult, as it was hard to gage the depth of a hand 
compared to that of the volume. This increased the difficulty level 
of the overall BHVC experience. So we decided to use image-
plane selection, in which a ray from the camera through the hand 
position was used to select objects. This gives the user the impres-
sion of controlling a 2D hand “cursor” and selecting whatever is 
underneath this cursor visually.

Finally, to improve the precision of the crack, and to give 
the user more control over isolation of the regions of interest, 
we introduced an important feature in BHVC. We called this 
the turning the pages feature (see Figure 3), inspired by a book 
metaphor. After cracking the volume, the user can now point 
to either of the sub-volumes and activate turn-the-pages with a 
button press. Like turning pages in a book, the user can then turn 
“layers” of voxels from one sub-volume to the other, where a layer 
is defined as a single-plane of adjacent voxels lying on the plane 
parallel to the cut-surface of the sub-volume. Moving the hand 
causes the two sub-volumes to synchronously shrink and expand 
along one axis, using a position-control mapping from the verti-
cal position of the hand to the position of the crack along the 
axis perpendicular to the cut-surface for each of the sub-volumes. 
This position mapping simulates how a reader turns the pages 
of a book depending on what she is looking for and combines 

the power of precise readjustment of the crack and the ease of 
intuitive position-based control.

Based on additional design sessions with Professor Socha, we 
introduced a few more features to make BHVC more usable and 
comprehensive for his tasks. We removed many of the redundant 
or extraneous degrees of freedom from both the cracking pre-
view and the sub-volume manipulation, adding constraints and 
automation. We further introduced a feature to hide selected sub-
volumes (see Figure 4). Once a volume is broken into multiple 
sub-volumes, and the user wants to focus on just one of them, the 
other sub-volumes might clutter or occlude the view unnecessar-
ily. This feature allowed the user to hide or unhide sub-volumes at 
will. We showed an outline for a hidden volume, to avoid losing its 
location visually. This feature could be combined with the page-
turning feature to focus on the growing or shrinking of only a 
single sub-volume.

Instead of having a fixed center of rotation at the origin of the 
virtual world, or at the centroid of all the visible sub-volumes, we 
decided to have the center of rotation at the center of the screen, 
but at an average depth of all the visible voxels. This kept rotating 
sub-volumes within the visible screen space.

With all these modifications, the interface was greatly simpli-
fied compared to the original VC. Although it was much less 
realistic than the original VC (less like holding and cracking the 
volume directly using the hands), it was highly usable and still 
allowed cracking the volume along any arbitrary axis necessary. 
It supported all generic volume data analysis tasks [as listed in a 
recent visual analysis task taxonomy for volume data (Laha et al., 
2015)] and appeared to be ready for a formal evaluation study by 
experts.

eValUaTiOn

study Design
We designed a study to evaluate the performance of the asym-
metric BHVC technique against standard interaction techniques 
used by researchers in volume data analysis. The first prototype 
of the VC (Laha and Bowman, 2013) was evaluated against the 
most widely used 2D interaction technique (AAS) and a widely 
known 3D interaction technique (AS). In AAS, three orthogonal 
2D slicing planes give simultaneous sliced views into the same 
dataset. In AS, the user has 3DOF orientation control over one 
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TaBle 1 | Tasks with abstract categories and difficulty levels.

Task # Task category Difficulty (5-hardest)

Q1 Search-naïve 1
Q2 Search-count 1
Q3 Shape description 2
Q4 Shape description 3
Q5 Spatial judgment-connection 3
Q6 Search-count 3
Q7 Spatial judgment-connection 4
Q8 Search-count 4
Q9 Spatial judgment-connection 4
Q10 Spatial judgment-connection 5

7

Laha et al. Bare-Hand Volume Cracker

Frontiers in Robotics and AI | www.frontiersin.org September 2016 | Volume 3 | Article 56

slice plane, giving sliced view into the dataset. Both of these 
remove certain occluding parts of the volume data to reveal 
internal areas of interest. We kept our evaluation design similar 
to our previous study (Laha and Bowman, 2013) to know how our 
design performs as compared to baseline 2D and 3DI techniques.

The drawbacks of the AAS technique (which provide only 
planar views to explore 3D regions of interest inside volume 
data) are quite well known. To alleviate such problems, almost 
all open-source medical analysis projects, such as Amira, 3D 
Slicer, MITO, and software packages shipping with commercial 
scanning hardware include a multiplanar reconstruction (MPR) 
facility. However, the AAS technique remains an integral part of 
all volume data analysis packages and is an important baseline 
technique, because it is the only technique that allows the user 
to view the actual source imagery obtained by the scanner. Thus, 
we chose to use AAS as a baseline to compare with the other 
techniques in our study.

We wanted to have expert participants in our study so that we 
could use real datasets and realistic analysis tasks. However, we 
found it relatively difficult to recruit many experts in the domain 
of biomechanics, which is a standard issue in domain-specific 
user studies (Laha et al., 2015). A within-subjects design would 
have given us more statistical power. But this was impractical 
because it would have required having three comparable datasets 
and tasks of equal complexity for each. We thus settled on a 
between-subjects design with three groups for each of the three 
techniques (BHVC, AS, and AAS). With the available number of 
experts (see Participants), we were able to secure four sets of data 
in each study group.

We made a conscious decision to avoid all confounds arising 
due to different hardware configurations between the techniques 
(our independent variable). Therefore, we designed the AS and 
AAS techniques with the same set of hardware (Leap and 3D 
mouse) as in our asymmetric BHVC. Just like in the BHVC, in 
both the AAS and AS, we used non-dominant hand control of the 
3D mouse for 3D manipulations and system control commands, 
and Leap-tracked gestures and postures of the dominant hand 
for technique-specific controls (such as slicing), as per Guiard’s 
postulates (Guiard, 1987). Through several iterations, we made 
sure that the Leap-based AAS matched its mouse-based versions 
as closely as possible (see Implementation). Although we did not 
test this formally, the strong results by the experts with our AS 
and the AAS techniques support the strength of our design (see 
Results).

For similar reasons and for higher statistical power, we avoided 
comparison with the original VC. Also, the original VC was not 
practical to use in a real-world lab setting. Our goal was not just 
to improve the original VC, but to design a version of it that could 
be used in a realistic scientific context.

goals and hypotheses
Our main goal was to determine how BHVC compares with the 
AS and AAS techniques in terms of quantitative task performance. 
Our primary research question was:

 1. Which technique (BHVC, AS, and AAS) performs best in 
terms of task performance for analyzing raw volume datasets?

Recent research has consolidated visual analysis tasks from 
multiple scientific domains together in an abstract task taxonomy 
(Laha et al., 2015). Our next goal was to understand the map-
ping between such abstract task categories and the interaction 
techniques we designed. Thus, our next research question was:

 2. Is the task performance with each technique consistent within 
abstract task categories, proposed in (Laha et al., 2015)?

We also wanted to capture some qualitative feedback on the 
usability of our interfaces for the three techniques that we pro-
totyped, from an expert perspective, giving us the next research 
question:

 3. How does BHVC compare with the standard interaction 
techniques in terms of user preference, usability, and ease of 
learning?

Based on our experience and prior results (Laha and Bowman, 
2013), we had the following hypotheses for our research questions.

H1.a. BHVC will be more accurate than both AS and AAS. BHVC 
was designed to isolate and analyze smaller regions in a 
whole volume. This should allow high accuracy on search 
tasks inside a volume. Spatial judgment tasks, involving 
close analysis of some internal structure or region of inter-
est within a volume from different viewpoints, should also 
benefit. AS gives quick insights into occluded sub-volumes 
but could be less accurate due to the associated loss of 
context. AAS uses an axis-aligned approach, whereas most 
internal structures in a volume dataset in general are not 
axis-aligned. Therefore, we expected it to be far less accurate 
than VC and AS techniques.

H1.b. BHVC will be slower than the other two techniques, in terms 
of visual analysis task completion. The number of features 
in BHVC is greater than in AS and AAS. This might cause 
BHVC participants to be slower than the other participants. 
Using the joining back functionality more frequently than 
turn-the-pages for getting precise cracks could also slow 
down performance.

H2. Task performance will be roughly consistent within each task 
category. The purpose of the abstract categorization is to group 
similar tasks. Table 1 shows the grouping of the tasks from 
this study based on our recent abstract categorization of vis-
ual analysis tasks in volume visualization (Laha et al., 2015).  
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and (D) aas: X-ray mode.
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This table also includes the task difficulty level, as decided 
by Professor Socha.

H3. For users, BHVC will be liked more than the other techniques 
but will have comparable usability ratings and ease of learn-
ing. We expected the real-world metaphor of cracking to 
elicit liking and quick learning. We iterated on the design 
of BHVC and the other techniques, focusing on making all 
of them usable.

hardware and software
We used a custom-configured computer with Intel’s Xeon CPU 
X5667 (64-bit) running at 3.07 GHz, with 48 GB RAM, an NVidia 
Quadro FX 5800 graphics card, and a Dell 27-inch monitor. We 
also used the Leap Motion controller and the Space Navigator Pro 
for 3D input. We used the Leap to track just one hand, in all cases.

We used NGRAIN’s cSDK (NGRAIN-Constructor-SDK, 
2015) to implement prototypes of BHVC, AS, and AAS. We 
integrated the APIs for the Leap and the 3D mouse with the 
cSDK, which pooled the inputs from the different hardware into 
a common application.

implementation
The handle (or the joystick) of the 3D mouse allowed 6DOF 
movements of the dataset, in the top-left quadrant of the AAS 
(see Figures  5C,D), and in the full-screen view of the AS 
(Figures 5A,B), and BHVC interfaces (see Figure 2). The back-
ward or forward tilt of the joystick pitched the data up or down; 
left or right twist caused the data to yaw left or right; left or right 
tilt rolled the data left or right. The translational movement of the 
handle in any direction translated the dataset in that direction. 
We used thresholds on the handle to start the rotations to separate 
those from the translations. But there was a very small window 
within which the joystick allowed simultaneous rotations and 
translations.

In the AAS interface (Figures 5C,D), we divided the screen 
into four quadrants. The top-left quadrant showed the dataset 
from an arbitrary 3D viewpoint. The other three quadrants had 
fixed views oriented along three orthogonal axes. Using the posi-
tion of the dominant hand above the Leap, the user could select 
any one of these three quadrants. The user could activate the slice 
mode for the direction of the selected quadrant by pressing the 
shift key on the 3D mouse pad and deactivate slicing by pressing 
the escape key. In the slicing mode, we position-mapped the slice 
plane to the forward–backward movement of the hand with the 
position of the hand right above the Leap always corresponding 

to the slice plane position halfway through the dataset. Pressing 
the C, S, and A keys on the keyboard would flip the direction of 
view (and the slice plane orientation) in each of the three quad-
rants. We chose the letters C, S, and A to denote correspondence 
with the coronal, sagittal, and axial views, terms used commonly 
in medical biology.

Our Leap-based AAS was comparable to the mouse-based 
AAS, because (1) the hand-movements for the selection of the 
quadrants in the Leap-based version occurred in a 2D plane, just 
like for the mouse; (2) we preserved the button-press accuracy for 
quadrant selection; and (3) simple movement of the hand allowed 
slicing in the selected quadrant.

In the AS interface (Figures 5A,B), we showed a transparent 
slice plane at the position and orientation of the hand, tracked by 
the Leap. The slice plane removed the volume behind the plane. 
The user could freeze the slice plane at any instant, to hold the 
selected sliced view, by pressing the shift key on the 3D mouse 
pad. While frozen, the 6DOF movements from the joystick would 
also move the frozen slice plane along with the volume. The user 
could unfreeze the slice plane with another shift key press.

We implemented the BHVC interface as described in the 
previous section on bimanual-asymmetric interface design. We 
used the shift key on the mouse pad to trigger cracking and 
joining back actions and to activate the turning-the-pages feature 
(see Figure 3), and the escape key for hiding or un-hiding the 
sub-volumes (see Figure 4).

For all interfaces, pressing the X key on the keyboard activated 
a transparent X-ray mode (see Figures 5B,D), and pressing the 
X key again would return the opaque rendering mode. The X-ray 
mode was designed to give insight into the hidden parts of the 
dataset. Pressing the R key on the keyboard would reset the 
dataset, as it was at the beginning. In all interfaces, we showed a 
small cube as a visual feedback for the 3D hand position, and a 
similar cube to denote the center of rotation.

Datasets
In CT, X-rays are used to scan objects using multiple projection 
images. Here, we used synchrotron X-ray micro-computed 
tomography (SR-μCT) at beamline 2-BM of the Advanced Photon 
Source, Argonne National Laboratory. This beamline provides 
the capability of high-resolution (~1 μm) 3D imaging, enabled 
by the quality of X-rays at a synchrotron light source (Xiao et al., 
2012). We used scans of the ground beetle Platynus decentis (from 
the family Carabidae). Carabid beetles are of scientific interest 
due to their dynamic tracheal behaviors, in which parts of the 
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tracheal system are compressed in a rhythmic fashion (Westneat 
et al., 2003; Socha et al., 2008). Our dataset consisted of a stack of 
raw 2D images. We used the software ImageJ (2015) to enhance 
contrast and crop the images before loading them in our software.

The size of the whole dataset was larger than our software could 
render at an interactive frame rate. Therefore, we partitioned the 
beetle dataset into five equal parts, labeled Part A to E, with the 
size of each part being 640 × 384 × 257 voxels (257 images each of 
640 × 384 pixels), chosen to preserve the whole region of interest 
of each dataset, while avoiding unimportant parts of the volume. 
This was the maximum size of the volume that we were able to 
render at 60 Hz frame rate, which we considered reasonable for 
our study. For every task in our study, we used only one of these 
five datasets (see Supplementary Material).

We selected a similar-sized dataset for training the participants, 
which was from a similar carabid beetle, of the genus Pterostichus. 
The training was focused on familiarizing the participants with 
the interaction techniques (see Procedure), so the exact compa-
rability of the data was not important. But we kept the size of the 
data comparable to that of the main study, to train the participants 
using similar rendering frame rates.

Tasks
We closely worked with Professor Socha to identify 12 tasks 
with the beetle dataset that are important to his research. After 
attempting these tasks ourselves, we rejected two tasks, as they 
were too difficult to fit within a 1-h study frame. The final list of 
10 tasks is in the Supplementary Material. Additionally, we identi-
fied five training tasks. The first three provided practice with 3D 
rotations and translations with the handle of the 3D mouse. The 
fourth task provided training in technique-specific functionali-
ties, specifically using three slice planes in AAS, using one slice 
plane in AS, and cracking in VC. The last training task related 
to system-control commands for switching between opaque and 
transparency modes, and resetting the dataset to initial position 
and orientation.

Participants
We recruited 14 participants for our study. Two of them were 
pilot participants and had no background in biomechanics. The 
remaining 12 participants were our main study participants. 
They were either undergraduate or graduate students, with a 
strong background in analyzing the kind of beetles we had in our 
study. Professor Socha confirmed that their expertise with the 
anatomy of carabid beetles did not differ significantly. They were 
20–31 years old with an average age of 24.8 years. We distributed 
them randomly between the three groups in our study, giving us 
four expert participants per group.

Procedure
The Institutional Review Board of our university approved the 
study. Upon arrival, the participant signed an informed consent 
form informing them of their rights to leave at any point during 
the experiment. They filled out a background questionnaire that 
captured their demographic details. The experimenter gave a brief 
summary of the experimental protocol to the participant. The 
participant was then introduced to the hardware and software 

used in the study, which included a detailed explanation of the 
different features of the 3D mouse and the Leap, as relevant to 
the study.

The experimenter then gave a demo of one of the three 
interaction techniques, based on the participant’s study group. 
This included system control illustrations with the 3D mouse, the 
Leap, and the keyboard.

The 3D mouse demonstrations showed how tilt and push on 
the handle mapped to the rotations and translations of the dataset. 
We also included unintended mistakes for interaction instances 
that trigger translation and rotation simultaneously with the 3D 
mouse handle, so that the participants knew what to avoid.

The demo of the Leap included a brief look at the Leap motion 
visualizer interface (Leap-Motion, 2015). It showed how the 
hand and finger movements are detected with high accuracy 
and low latency. The experimenter gave a brief explanation of 
the field of view (FOV) of the Leap (like an inverted cone) and 
outlined the approximate boundary of the tracked space using 
his hands. The experimenter demonstrated the uses of the Leap 
specific to the interaction technique of the participant’s group 
(see Implementation).

The experimenter then outlined best practices with the Leap to 
avoid tracking and occlusion problems. The participant was asked 
to avoid bringing the dominant hand within four to five inches 
of the Leap and from going outside the boundaries of its FOV. 
The experimenter also suggested the participant to stretch out the 
fingers (to avoid occlusion problems and have better tracking), 
and to sit upright as much as possible.

The participant then performed the training tasks, took an 
optional break (a few minutes), and completed the main tasks. 
The main tasks were ordered by increasing difficulty (see Table 1), 
as determined by Professor Socha.

For each main task, the experimenter recorded the response 
of the participant, which was evaluated offline using a grading 
rubric prepared by Professor Socha. The grading rubric had rat-
ings for each task on a scale of 1–10. The increments of the scale 
varied for each task, as decided by Professor Socha.

There was a maximum allowable time for each task (see 
Supplementary Material), which the participant was given 
before beginning a task. The experimenter recorded the time 
that the participant took to perform each task using a stopwatch. 
However, the participant was asked to focus on the accuracy of 
their response rather than on its duration.

After completing the tasks, the participant filled out the 
post-questionnaire. The experimenter carried out a free-form 
interview to answer any questions the participant had, before 
concluding the study. The whole study lasted for about an hour 
per participant. The experimenter’s demo session lasted around 
5 min, and the participant’s training session lasted about 20 min.

results
The grade for each task (between 0 and 1), and the quantita-
tive metrics from the background questionnaire and the post 
questionnaire (all on 7-point scales) had ordinal data, while 
the recorded time was of the continuous type. We employed 
the non-parametric ordinal logistic regression based on a Chi-
square statistic for the ordinal variables, and a one-way analysis 
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FigUre 6 | average grades (with se bars) secured by the participants with the three interaction techniques for only significant or close-to-
significant p Values (<0.1).

TaBle 2 | effects of interaction technique on grades for only significant 
or close-to-significant p Values (<0.1).

Task: 
source

χ2 DF p-Value Techniques sorted by mean 
scores (≫: significantly better)

Q1 7.1941 2 0.0274* BHVC > AS > AAS
Q3 5.9593 2 0.0508 BHVC > AS > AAS
Q4 5.2683 2 0.0718 BHVC = AS > AAS
Q5 6.7914 2 0.0335* BHVC > AS > AAS
Q8 5.2683 2 0.0718 BHVC = AS > AAS
Q9 8.9973 2 0.0111* BHVC = AS > AAS
Weighted 
average

20.207 2 <0.0001* BHVC ≫ AS, BHVC ≫ AAS

Post hoc tests showed that the increase in the weighted total grade was  
close-to-significant from AAS to BHVC (p = 0.0625) and from AAS to AS (p = 0.0625).
*shows significant p values at p = 0.05 level.
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of variance (ANOVA) for the time metric. When we found sig-
nificant differences between the techniques in any of the ordinal 
data metrics, we further employed the non-parametric two-sided 
Wilcoxon signed rank test (with Bonferroni corrections) for 
post hoc analysis. The Wilcoxon test often showed higher p-Values 
than the original regression tests, as it was more conservative than 
the ordinal logistic regression model.

To produce an overall performance measure for each par-
ticipant, we calculated a weighted overall grade, which took into 
account the difficulty level of each task (Table  1; the difficulty 
levels were used as weights), and the grade received for each task 
by each participant.

Grade Metric: The Accuracy of Task Performance
We observed several significant and nearly significant effects of 
interaction technique on the accuracy of tasks performance. We 
summarize these in Table 2 and Figure 6.

Time Metric: The Speed of Task Performance
We did not find any significant difference between the techniques 
for the speed of completion of any of the tasks. On an average, 
BHVC participants took longer than the others. For Q10, we 
found that the effect of technique on the speed of task perfor-
mance was close-to significant at p = 0.0654, with BHVC being 
the slowest technique.

Background Questionnaire Metrics
We ran pairwise correlation tests (Spearman’s ρ) between the 
participants’ weighted overall grade, their total time of task 
performance, and their self-reported ratings of fatigue, expertise 
with computers, frequency of computer use (for work and for 
fun), experience with volume data analysis (in general and with 
biomechanics), experience with the technique they used, experi-
ence with video games or 3D movies at the theater or at home, 
experience with Nintendo Wiimote, Sony Move, or Microsoft 
Kinect, and experience with 3D interaction for volume data anal-
ysis. Experience with video games or 3D movies (at the theater 
or at home) showed a significant inverse correlation (ρ =  −0.681; 
p = 0.0148*) with the total time taken for task performance.

Post Questionnaire Metrics
From the post questionnaire responses, we found that the 
overall experience of the participants differed significantly 
(χ2

df=2  =  14.6325, p  =  0.0007*) between the interaction tech-
niques. The difference in the perceived ease of learning the 
techniques was close-to-significant (χ2

df=2 = 4.7167, p = 0.0946). 
There was no significant difference between the techniques for 
perceived usefulness or ease of use. Post hoc tests indicate that 
the improvement in the overall experience of the participants was 
close-to-significant from AAS to VC (p  =  0.0625). 75% of the 
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participants, in each of the AS and BHVC techniques, thought 
that some form of auto-locking feature of the cutting plane (along 
the X, Y, or Z axis) would be helpful. Although we did not have a 
mandatory fatigue reporting metric, half of the AAS participants 
reported fatigue in their arms.

DiscUssiOn

effect of the Techniques on 
Task Performance
Revisiting the research questions, we find strong evidence for 
hypothesis H1.a (BHVC will be more accurate than both AS 
and AAS). For the overall weighted average scores, BHVC was 
significantly better than AAS and was also the best overall. For all 
tasks in which we found significant differences in the accuracy of 
task performance, BHVC participants consistently received the 
highest scores (see Figure 6).

There was no significant difference between the techniques for 
the speed of task performance; however, BHVC was the slowest 
of them all. This supports our hypothesis H1.b (BHVC will be 
slower than the other two techniques, in terms of visual analysis 
task completion). In task Q10, which was the most difficult as per 
Professor Socha’s rating, BHVC participants were close to being 
significantly slower than the others. This happened because the 
participants took time to precisely crack the dataset multiple 
times, hide some of the sub-volumes, and isolate the small por-
tion of the volume that had a particular piece of anatomy that was 
required to analyze. This also reflects a result from our previous 
study (Laha and Bowman, 2013), where we found that VC was 
slower than the other two techniques for pattern recognition 
tasks.

consistency of Performance within 
Task groups
Analyzing the results grouped by task type (see Table 1), we find 
some consistency in the results within the task groups, partially 
supporting hypothesis H2 (Task performance will be roughly 
consistent within each task category). For example, the only naive 
search task in our study (Q1) showed a significant difference 
between the techniques for accuracy, but none of the counting-
based search tasks (Q2, Q6, and Q8) showed any significant 
difference between techniques. Both shape description tasks (Q3 
and Q4) showed close-to-significant differences in task perfor-
mance, with BHVC participants scoring higher than the rest.

For the spatial judgment tasks (Q5, Q7, Q9, and Q10), the 
results were mixed, suggesting a possible need for more specificity 
in that group definition (Laha et al., 2015). Two of the tasks (Q5 
and Q9) showed a significant difference between the techniques 
for accuracy of task performance; whereas for the other two 
(Q7 and Q10), there was no significant difference between the 
techniques. Analyzing closely, we found that Q7 might be differ-
ent than the other three spatial judgment tasks because Q7 was 
an open-ended search for left–right connections in the dataset, 
whereas the other three had specific “anchors” around which the 
tasks were designed.

Our results indicate that tasks designed within the search or 
the shape description categories showed more consistency in 

performance than those within the spatial judgment category, 
from our recent task taxonomy (Laha et al., 2015).

effect of the Techniques on 
User Preference
To address the third research question (on user preference), we 
looked at the post-questionnaire measures. The self-reported 
overall experience of the participants differed significantly 
between the techniques, with BHVC receiving the highest ratings, 
which were close to significantly higher than those of AAS. But 
the participants did not think that the techniques were different 
for ease of use, ease of learning, and usefulness. This result partly 
supports hypothesis H3 (BHVC will be liked more than the other 
techniques but will have comparable usability ratings and ease of 
learning), on the comparable usability ratings of the interaction 
techniques.

2D vs. 3D interaction for analysis  
of Volume Data
The scores of the AS and BHVC participants were comparable for 
some tasks (Q4, Q8, and Q9), and for others, were significantly 
(Q9) or nearly significantly (Q4 and Q8) better than the scores of 
AAS participants. For individual tasks, the scores of the BHVC 
participants did not significantly differ from those of the AS 
participants; just for the overall weighted score, BHVC was close 
to significantly better than AS (at p = 0.0515). Both BHVC and AS 
being 3D interaction techniques, this strongly suggests that 3DI 
could significantly improve task performance in visual analysis of 
volume datasets, over 2D interaction techniques.

From our observations, we believe that the problems with AAS 
in general were caused by the random orientation of the internal 
structures in the data and the gaps between them, in contrast to 
the slicing planes in AAS, which were always axis-aligned. This 
direct mismatch in the affordance of the interaction and the 
requirement for analysis caused problems. This mismatch was 
also reflected in the post-questionnaire comments of one AAS 
participant. Both AS and BHVC allowed the participants to slice 
or crack along any arbitrary direction necessary to isolate and 
closely monitor a structure from a desired angle, which partly 
overcame the problems with AAS, and highlights the usefulness 
of 3DI in this specific scenario.

But the loss of context in both AS and in AAS also interfered 
with the overall analysis. BHVC preserved this lost context (by 
preserving all voxels at all times), allowed precise isolation of the 
structures (through turn-the-pages feature), and also allowed 
hiding less important sub-volumes to give clearer views of the 
regions of interest in the whole volume. These features in BHVC 
might have contributed to its overall superior performance.

BhVc vs. Vc
Due to all the differences between the BHVC and the original VC 
system, a direct comparison was neither reasonable nor practical. 
However, the tradeoffs between the two designs are clear. The 
original VC was more expressive and less constrained, since the 
workspace was considerably larger (large enough that the user 
did not have to worry about getting out of the workspace) and 
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hands could be tracked in any orientation. On the other hand, the 
BHVC is significantly less cumbersome, because the user could 
simply walk up and use it, without having to put anything on, 
and it also avoids tethering the user to the computer by cables. It 
is important to note here that since the BHVC was created, Leap 
has released their recent software upgrade nicknamed “Orion,” 
which improved tracking significantly through their device and 
overcame much of its previously reported occlusion issues (Laha 
and Bowman, 2014). As innovations are occurring at a fast pace 
in the 3DUI industry, it is highly likely that a subsequent study 
evaluating the BHVC design with updated Leap software would 
result in a more responsive and accurate user experience.

Toward hardware-agnostic 
Design Principles
Creating hardware-agnostic design guidelines was not the focus 
of this work. However, the migration of an existing 3DI tool (VC) 
between disparate hardware platforms provided important learn-
ing experiences, described below.

Hardware Idiosyncrasies Dictate Design Choices
To avoid the encumbrances involved with tethered 5DT gloves, we 
used a bare-hand tracking device, but we faced occlusion issues 
with its camera-based tracking. Alternatively, we could have 
used electromagnetic [e.g., Polhemus’ G4 (Polhemus, 2015)], or 
inertial trackers [e.g., Intersense’s Inertiacube (Intersense, 2015)], 
which are much higher priced (thousands of dollars) than com-
modity tracking devices and involve tethering the user’s hands. 
Other optical or vision-based trackers [such as Vicon (2015)] 
would also have occlusion issues.

Our chosen bare-hand tracking device currently has the best 
combination of low latency and high accuracy in the consumer 
price range. But it suffered from occlusion issues, aside from 
occasional tracking issues (jitters and random assignment of 
hand IDs), when two hands were tracked simultaneously. Our 
decision to stick to this hardware led us to make design choices 
to optimize the performance of our technique, working around 
the hardware problems. This led to important design decisions, 
which were not always natural (like open palm for grab action), 
but still led to effective 3DI technique design. We believe our 
choices can potentially inform future 3DI designs in the realm of 
infrared-based tracking devices for desktops.

Use Natural Mappings for Gestures When Possible 
but Not at All Costs
Prior research has shown that naturalness is not a necessary 
criterion for optimal design decisions; depending on the task 
in focus, naturalness in the interaction could be beneficial or 
detrimental (Bowman et  al., 2012). This is directly reflected in 
our current design and evaluation. Not all interactions were 
natural in our case, but the overall package (combining interac-
tion techniques and tracking hardware) of both BHVC and AS 
proved to be effective, over AAS. Our evaluation showed that the 
expert participants performed better with BHVC and AS in their 
standard analysis tasks – the increase in the weighted total grade 
was close-to-significant from AAS to BHVC and from AAS to AS.

The experts’ preference (based on overall experience) of 
our BHVC technique was close to significantly better over the 
standard 2D technique (AAS), whereas there was no significant 
difference between the interaction techniques in the perceived 
usefulness and ease of use. This is a very strong result, considering 
the non-naturalness of some of the interactions with BHVC.

It is also important to note that the symmetric version of the 
BHVC failed partly because of the occlusion problems caused by 
a two-handed, fully gestural interface. But the technique-specific 
gestures, when used in combination with another input device 
handling 3D manipulation and system control (asymmetric 
BHVC), were very useful. So, effective 3DI designs may not 
always need to be fully gesture-based.

Comfort Is Important in Gesture-Based 3DI Design
The symmetric BHVC could induce fatigue in the forearms 
quickly, which was a stated concern of Professor Socha. The 
asymmetric BHVC not only reduced fatigue by having just 
one hand for gestures, but also allowed to “clutch” or freeze the 
visualization imprecisely when needed, while turning-the-pages 
allowed precision in sub-volume selection. Lower comfort in the 
AAS design was also reflected by one of the participants reporting 
fatigue with it, but we had no objective measure for it. The Leap 
requires a user’s hands to be always within its FOV, and floating 
in free space, which can cause more fatigue than from trackers 
without restricted FOV. This is a general problem with camera-
based trackers, which can be mitigated by wearable or inertial 
(Intersense, 2015) or magnetic hand trackers (Polhemus, 2015).

Other Observations and Thoughts
We also found that the participants with higher experience in 
video games or 3D movies were faster in their task completion, 
which probably suggests that some proficiency in using 3D input 
devices might be helpful for using the interfaces we designed. 
Multiple participants suggested in the post-questionnaire com-
ments that switching the direction of some of the axes in the 3D 
mouse might be useful. We think this resulted from their percep-
tual mismatch between the egocentric viewing (e.g., in games) 
and the exocentric viewing in our design.

The AS and BHVC participants recurrently noted a desire to 
restrict the movement of the cutting plane. This request suggests 
that the participants found the combined degrees of freedom in 
3D manipulation and slicing or cracking to interfere with their 
ability to focus on the task at hand. Some of the participants in the 
AS and the AAS also thought that having a translucent or “ghost” 
version of the sliced part of the dataset might be helpful. We 
believe that this points to the probable loss of important context 
for visual analysis, due to slicing.

cOnclUsiOn anD FUTUre WOrK

We present the design of a bare-hand version of the VC technique 
(Laha and Bowman, 2013) and provide evidence that the inter-
face has significant benefits over baseline 2D (AAS) and 3D (AS) 
interaction techniques for certain categories of generic visual 
analysis tasks with volume visualization (Laha et al., 2015). Our 
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contributions include a practical bare-hand version of the VC, 
which could be directly adapted by domain scientists in their labs. 
We also contribute the lessons learned while redesigning an exist-
ing technique to use a bare-hand tracking device (Leap), provide 
guidance for designing bare-hand interactions for infrared-based 
desktop tracking devices, and insights into hardware-agnostic 
design principles. Our evaluation with experts and real-world 
datasets provides evidence for the benefits of 3D interaction 
techniques (VC and AS) over standard 2D interaction techniques 
(AAS), and in particular, for improvements in task performance 
with BHVC. Lastly, our results indicate that tasks mapped to a 
recent abstract task taxonomy (Laha et al., 2015) showed more 
consistency in performance within search and shape description 
categories than within spatial judgment. Our contributions are 
in the realm of 3D user interfaces tightly integrated with and 
inspired by techniques developed in 3D visualization research. 
We believe BHVC is geared to improve the effectiveness of 3D 
visualizations for visual analysis of volume datasets.

Future work may include design and evaluation of 3D tech-
niques and tools aimed at addressing the problems specific to 
other task categories in a generic mapping of tasks (Laha et al., 
2015), so that the impact of the work is across multiple scientific 
disciplines. We suggest that the next iteration of the VC explore 
using a volumetric region of magnetic influence of the domi-
nant hand, such as a sphere, as opposed to a plane used in our 
design (see Bimanual-Asymmetric Interface Design for BHVC). 
Careful design of a suite of 3D interaction tools and its evalua-
tion against standard techniques used currently can produce the 
next generation of segmentation and classification techniques. 

Future evaluation studies can also compare the precision of bare-
hand interaction techniques to that of the mouse for the level 
required in precise region-of interest isolation for volume data 
segmentation.
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